Archiv článků: pravděpodobnost

Taje Benfordova zákona

Zdroj: Oleg Alexandrov – Wkipedie, licence obrázku public domain

Benfordův zákon byl několik desetiletí po svém objevu považován za pouhou zvláštnost, kouzelnický a numerologický trik, a ne matematický fakt. /Benfordův zákon: Jednička je první cifrou v 30,1 % případů, dvojka v 17,6 % případů a trojka v 12,5 % případů. Pokles v četnosti je tak dramatický, že se jednička vyskytuje skoro sedmkrát častěji …

více »

Asi polovina dnes publikovaných vědeckých článků je chybných

Zdroj: Oleg Alexandrov – Wkipedie, licence obrázku public domain

Jinak řečeno – prokazují se zde závislosti, které se při dalším zkoumání nepotvrdí. Nejčastěji jsou dnes v recenzovaných časopisech publikovány výsledky, které mají na hladině pravděpodobnosti 95 % vyloučit, že vazba mezi dvěma sledovanými veličinami je dílem náhody (hladina významnosti „p value“ menší než 0,05). Co když se ale autorovi …

více »

Petrohradský paradox: Pravděpodobnost, očekávání a užitek

Zdroj: Oleg Alexandrov – Wkipedie, licence obrázku public domain

Tím, že přemýšlíme nad pravděpodobností výhry i nad hodnotou, kterou máme získat, si stanovujeme míru rizika a sázky. Čím vyšší je naše očekávání, tím ochotněji riskujeme. Tak to alespoň platí v teorii. V mnoha případech se míra očekávání skutečně ukazuje jako dostatečně spolehlivý nástroj k odhadu výhry či ztráty. Přesto zde existuje problém, …

více »

Jak hrát ruletu – nejlepší ze špatných strategií

autor Continentaleurope, zdroj: Wikipedia, licence obrázku GFDL

Jistěže za normálních okolností se hazard nevyplácí, však ruleta má nulu. Když už ale hrajeme, jaká strategie je nejlepší? Nejlepší míněno čistě z matematického hlediska. Samozřejmě, že když už je člověk v Las Vegas či Monte Carlu, pak si může zahrát prostě čistě pro zábavu, a bude třeba sázet jen …

více »

Záhadné paradoxy Šípkové Růženky

autor Continentaleurope, zdroj: Wikipedia, licence obrázku GFDL

Co když se neshodnou ani odborníci? Je problém v našich hlavách, v jazyce nebo matematice? Skřínkový paradox je docela známý. Člověk má volit ze tří skřínek, v jedné z nich je kýžená odměna, další dvě jsou prázdné. Vyberete skřínku A. Nyní manipulátor, který zná řešení, otevře jednu ze dvou zbylých …

více »

Používáme soubory cookies pro přizpůsobení obsahu webu a sledování návštěvnosti. Data o používání webu sdílíme s našimi partnery pro cílení reklamy a analýzu návštěvnosti. Více informací

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close