Ponderomotorická síla vytlačuje elektrony z oblastí s vysokou světelnou intenzitou. Fyzici z Univerzity Karlovy studovali interakci mezi elektrony a světlem v novém režimu, ve kterém se elektrony zachytí v optické záznějové vlně. Výsledná manipulace s energetickými spektry elektronů může přinést zajímavé aplikace v elektronové mikroskopii a spektroskopii. Elektronová mikroskopie je …
více »Světlo umožňuje manipulovat s excitony i magnetismem
Vědci z MITu a dalších institucí objevili při studiu exotické fyziky nový způsob manipulace s magnetismem materiálu pomocí světla; navíc přitom také připravili vzácnou formu hmoty. Výsledkem by mohly být nové technologické aplikace včetně mnohem rychlejších pamětí. Excitony jsou kvazičástice skládající se z elektronu a díry – obvykle původního místa, …
více »Fotoelektrický jev proběhne bleskově, v attosekundách
Albert Einstein nedostal Nobelovu cenu za teorii relativity, ale za popis fotoelektrického jevu. Když na materiál dopadne světlo, mohou se z něj uvolňovat elektrony. Einsteinův přínos zde spočíval v tom, že potvrdil existenci kvant energie světla – fotonů (světlo nepředává svou energii spojitě). Dosud ale nebylo jasné, jak rychle se …
více »Kvantové tření vysvětluje proudění vody v uhlíkových nanotrubičkách
Již asi 15 let vědce mate způsob, jímž voda protéká uhlíkovými nanotrubičkami se stěnami o tloušťce až jediného atomu. Z pohledu teorie dynamiky tekutin se zde děje něco podivného; kapalina paradoxně prochází užšími nanotrubičkami snadněji a ve všech nanotrubičkách se navíc pohybuje téměř bez tření. Nová studie uvádí, že vysvětlením …
více »Zjistilo se, jak defekty v grafenu souvisejí s vodivostí
Grafen má velmi unikátní vlastnosti a mohl by vylepšit mnoho součástek a přístrojů. Pro úspěšné využití tohoto 2D materiálu v praxi je podstatné detailní pochopení jeho fyzikálně-chemických vlastností – včetně role strukturních defektů. Vědci z Ústavu fyzikální chemie J. Heyrovského Akademie věd ČR zjistili, že když zkombinují dvě různé metody …
více »Podivné kovy a vysokoteplotní supravodivost
Jako podivné kovy (strange metals) se označují materiály, u nichž se odpor v závislosti na teplotě mění „až příliš jednoduše“. V běžném kovu ovlivňuje elektrický odpor spousta různých procesů – elektrony se mohou srážet s atomovou mřížkou, s nečistotami i samy se sebou a každý z těchto faktorů má jinou …
více »Nový materiál s těžkými fermiony napodobuje kovy vzácných zemin
Kondův jev a speciální kvantové provázání. Fyzikové vytvořili nový ultratenký dvouvrstvý materiál s vlastnostmi, které dosud vyžadovaly sloučeniny kovů vzácných zemin. Tento materiál, který lze navíc poměrně snadno vyrobit, by podle autorů výzkumu mohl poskytnout platformu pro kvantové výpočty, posunout výzkum nekonvenční supravodivosti a tzv. kvantové kritičnosti. Původně se vědci …
více »V polovodičích nového typu mohou mít elektrony zápornou hmotnost
Jak se často uvádí, v grafenu a podobných materiálech se elektrony chovají, jako by měly nulovou efektivní hmotnost. Tím ale podivnosti zdaleka nekončí. V nově připravených nanostrukturách mají mít elektrony rovnou hmotnost zápornou. Na výzkumu se podíleli vědci z University of Regensburg (Řezno), Berkeley, Yale, Cambridge a Tsukuba (Japonsko). Co …
více »Nový elektrid z trimerů uhlíku
Elektridy jsou velmi zajímavé iontové „sloučeniny“, kde v krystalové mřížce ovšem namísto záporně nabitých atomů či jejich skupin najdeme samotné elektrony, které tak nejsou součástí atomového obalu. Zkoumané elektridy mají často navíc povahu 2D materiálů, i když to nemusí nutně znamenat, že se skládají jen z jediné vrstvy atomů. Hannes …
více »První přímé pozorování Wignerových krystalů
Wignerovy, respektive elektronové krystaly, znamenají pravidelné a stabilní uspořádání elektronů v materiálu. Tedy míněno „volných“ elektronů, které nejsou součástí slupek atomů. Již v roce 1934 fyzik a nositel Nobelovy ceny Eugene Wigner ukázal, že elektrony v materiálu se mohou teoreticky uspořádat do pravidelných krystalických obrazců díky jejich vzájemnému elektrickému odpuzování. …
více »