Na základě téměř desetiletého pečlivého pozorování Velkého Magellanova oblaku se mezinárodnímu týmu astronomů podařilo určit vzdálenost táto sousední galaxie s dosud nejvyšší dosaženou přesností. Nová měření pomohou upřesnit hodnotu Hubbleovy konstanty, která vyjadřuje aktuální rychlost expanze vesmíru. To je nezbytný krok směrem k pochopení povahy tajemné temné energie, která expanzi vesmíru urychluje. Tým použil dalekohledy na observatoři ESO/La Silla v Chile a další teleskopy po celé planetě. Výsledky byly publikovány 7. března 2013 v odborném časopise Nature.
Rozměry vesmíru astronomové určují tak, že nejprve změří vzdálenost vhodných blízkých objektů a ty následně použijí jako takzvané standardní svíčky [1]. Díky nim mohou určit, jak daleko jsou i ty nejvzdálenější galaxie. Spolehlivost celého postupu je však závislá na přesnosti, s jakou je stanovena vzdálenost blízkých objektů. Jak daleko je jedna ze sousedních galaxií (Velký Magellanův oblak), jsme ještě nedávno věděli jen přibližně. A jelikož hvězdy této galaxie jsou používány ke kalibraci měření v dalekém vesmíru, je přesná znalost její vzdálenosti velmi důležitá.
Pečlivá pozorování vzácného typu dvojhvězd umožnila týmu astronomů určit vzdálenost Velkého Magelanova oblaku na 163 000 světelných let, a to s dosud nedosažitelnou přesností.
„Jsem nadšený. Astronomové se pokoušejí o změření vzdálenosti Velkého Magellanova oblaku již sto let. Postupně se ale ukázalo, že je to velmi obtížný úkol,“ říká Wolfgang Gieren (Universidad de Concepción, Chile), jeden z vedoucích členů týmu. „A my jsme nyní tento problém vyřešili. Spolehlivě jsme určili vzdálenost této galaxie s chybou pouhá 2 %.”
Zpřesnění vzdálenosti Velkého Magellanova oblaku umožňuje rovněž přesněji určit, jak daleko jsou početné Cefeidy [2], které v této galaxii pozorujeme. Tyto jasné pulsující hvězdy jsou používány jako standardní svíčky při měření vzdáleností odlehlejších galaxií, a tedy i při určování rychlosti expanze vesmíru (tedy Hubbleovy konstanty). A to je základem ke zkoumání těch nejvzdálenějších částí vesmíru, které je možné současnými přístroji pozorovat. Takže čím přesněji víme, jak daleko je Velký Magellanův oblak, tím menší jsou chyby měření velkých kosmologických vzdáleností.
Určení vzdálenosti Velkého Magellanova oblaku je výsledkem pozorování pečlivě vybraného vzorku těsných dvojhvězd [3], známých jako zákrytové proměnné. Při oběhu kolem těžiště soustavy dochází k jejich vzájemnému zakrývání. Pokud tento jev nastane, pozorovatel na Zemi zaznamená pokles jasnosti celého systému; bez ohledu na to, jestli daná hvězda prochází před nebo za druhou složkou. Rozdíl je pouze v úrovni poklesu jasnosti [4].
Měřením změn jasnosti a kombinací výsledků s určením orbitálních rychlostí hvězd je možné stanovit, jak jsou hvězdy velké, jakou mají hmotnost a po jaké dráze se pohybují. A pokud k tomu přidáme barevnou fotometrii jednotlivých hvězd [5], je možné ze získaných údajů odvodit překvapivě přesnou hodnotu vzdálenosti takového systému.
Metoda již byla využívána dříve, ale u horkých hvězd. V takovém případě však bylo potřeba zavést dodatečné předpoklady, a určené vzdálenosti zdaleka nebyly tak přesné. Nyní se však podařilo identifikovat devět mimořádně vzácných zákrytových dvojhvězd, kde obě složky jsou chladnější rudí obři [6]. Tyto hvězdy byly zkoumány velmi detailně a přinesly mnohem přesnější určení vzdálenosti – s chybou kolem 2 %.
„ESO nám poskytla soubor výborných dalekohledů a přístrojů, které jsme pro naše pozorování potřebovali: spektrograf HARPS pro přesná měření radiálních rychlostí slabých hvězd a přístroj SOFI pro určení jasnosti v infračerveném oboru spektra,“ říká Grzegorz Pietrzyński (Universidad de Concepción, Chile a Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Polsko), vedoucí autor nového článku v prestižním odborném časopise Nature.
„Stále pracujeme na dalším vylepšení naší metody a doufáme, že se nám během několika let podaří přesnost určení vzdálenosti Velkého Magellanova oblaku ještě snížit až na 1 %. Naše měření mají dalekosáhlé implikace nejen pro kosmologii, ale i pro mnoho dalších oborů astrofyziky,“ dodává Dariusz Graczyk, jeden ze spoluautorů článku.
Poznámky
[1] Standardní svíčky jsou objekty, u kterých známe absolutní jasnost. Na základě měření jejich zdánlivé jasnosti na obloze mohou astronomové určit vzdálenost – vzdálenější objekty stejného druhu vypadají slabší. Příkladem takové standardní svíčky jsou proměnné hvězdy Cefeidy
[2] nebo supernovy typu Ia. Nejobtížnější na celém postupu je kalibrace, neboť je potřeba nalézt blízké příklady těchto objektů, u kterých je možné vzdálenost určit i jinými metodami.
Další informace
Výzkum byl prezentován v článku “An eclipsing binary distance to the Large Magellanic Cloud accurate to 2 per cent” autorů G. Pietrzyński a kol., který vyšel 7. března 2013 v odborném časopise Nature.