Tým astronomů sledoval v přímém přenosu vznik hvězdného prachu – jako následek výbuchu supernovy. Poprvé se jim tak podařilo ukázat, že tvorba kosmického prachu probíhá ve dvou fázích – začíná krátce po samotné explozi, ale trvá po mnoho následujících let. K analýze světla přicházejícího ze supernovy SN 2010jl ve fázi slábnutí astronomové použili dalekohled ESO/VLT, který pracuje v severním Chile. Výsledky byly publikovány ve vědeckém časopise Nature 9. července 2014.
Původ kosmického prachu v galaxiích je stále záhadou [1]. Astronomové však vědí, že jeho primárním zdrojem, především v mladém vesmíru, by mohly být supernovy. Není však jasné kde a jak prachová zrna kondenzují a narůstají. Také není známo, jakým způsobem uniknou destrukci v drsném prostření galaxie s probíhajícím vznikem hvězd. Nová pozorování provedená dalekohledem ESO/VLT na observatoři Paranal však pomáhají tuto záhadu vyřešit.
Mezinárodní tým astronomů použil spektrograf X-shooter k pozorování supernovy známé pod označením SN 2010jl. Během několika měsíců pořídili devět sad pozorování ve viditelné i blízké infračervené oblasti [2] a poslední desátou sadu pak získali celého 2,5 roku po výbuchu. Tato neobvykle jasná supernova (výbuch v závěrečné fázi vývoje velmi hmotné hvězdy) explodovala v malé galaxii s označením UGC 5189A.
„Kombinací dat s předchozích devíti sérií se nám podařilo poprvé přímo změřit, jak prach v okolí supernovy absorbuje rozdílné vlnové délky záření,“ říká hlavní autorka článku Christa Gall (Aarhus University, Dánsko). “To nám umožnilo o částicích prachu zjistit více informací, než bylo dříve možné.“
Vědci objevili, že formování prachových částic začíná krátce po samotném výbuchu a trvá po dlouhou dobu. Nová měření také odhalila, jak velká prachová zrnka jsou a z čeho se skládají. Tento objev je však o krok zpět za nedávno publikovanými výsledky získanými pomocí radioteleskopu ALMA (Atacama Large Millimeter/submillimeter Array), kterému se jako prvnímu podařilo detekovat oblak čerstvě zformovaných prachových částic v okolí slavné supernovy SN 1987A (SN 1987A; eso1401).
Zjistili také, že prachová zrna o průměru větším než tisícina milimetru vznikla velmi rychle v husté hmotě obklopující hvězdu. Ačkoli z pohledu běžných lidských měřítek jsou tato zrnka stále drobounká, na částice kosmického prachu je tento rozměr překvapivě velký, a díky tomu jsou tyto částice odolné vůči řadě destruktivních procesů. A právě to, jak částice prachu mohou přežít v bouřlivém a nebezpečném prostředí, které nacházíme v pozůstatcích po explozi supernovy, bylo jednou z hlavních otevřených otázek v článku publikovaném na základě pozorování pomocí ALMA. Tyto výsledky poskytují hledanou odpověď – zrnka jsou větší než se předpokládalo.
„Naše pozorování větších prachových částic krátce po explozi supernovy znamená, že zde musí existovat nějaký rychlý a efektivní proces, jak taková zrnka vytvořit,“ říká spoluautor článku Jens Hjorth (Niels Bohr Institute of the University of Copenhagen, Dánsko). A dodává: „Skutečně přesně nevíme, jak k tomu dochází.“
Astronomové se však domnívají, že vědí, kde se nový prach musel vzít: v hmotě, kterou hvězda vyvrhla do svého okolí ještě před samotnou explozí. Jak se prostorem rozšiřuje rázová vlna supernovy, vzniká chladná a hustá plynová obálka – a to je přesně typ prostředí, kde prachová zrnka mohou vznikat a narůstat.
Výsledky pozorování také ukazují, že v další fázi – po několika stovkách dnů – dochází k dalšímu urychlenému procesu formování prachu v materiálu vyvrženém samotnou supernovou. Pokud by produkce prachu v pozůstatcích po supernově SN 2010jl pokračovala s pozorovaným trendem po následujících 25 let, celkem by vzniklo množství prachu odpovídající polovině hmotnosti Slunce, což je porovnatelné s množstvím prachu pozorovaným u jiných supernov jako třeba u SN 1987A.
„Astronomové v minulosti nalézali velké množství prachu v pozůstatcích po supernovách. Ale zároveň nacházeli důkazy vzniku jen malého množství prachu při samotných explozích supernovy. Tato mimořádná nová pozorování umožňují tento zdánlivý rozpor vysvětlit,“ dodává Christa Gall.
Poznámky
[1] Kosmický prach se skládá ze zrn tvořených křemíkem a amorfním uhlíkem – což jsou minerály hojně se vyskytující i na Zemi. Uhlíkový kosmický prach se podobá sazím ze svíčky, částice sazí jsou však asi desetkrát (i vícekrát) větší, než je typická velikost zrn kosmického prachu.