Marsovský Gale Crater dnes. Credit: NASA

Proč z Marsu uniká metan?

Jedním z nejpřekvapivějších odhalení amerického vozítka Curiosity bylo zjištění, že z povrchu kráteru Gale uniká metan. Tahle informace vědcům docela zamotala hlavu. Na Zemi produkují většinu metanu živé organismy, ale vědci zatím nenašli přesvědčivé důkazy současného či minulého života na Marsu a proto tam nečekali detekci metanu. A přesto malá laboratoř v útrobách roveru Curiosity, která se jmenuje SAM (Sample Analysis at Mars), opakovaně „vyčenichala“ stopová množství tohoto plynu v blízkosti povrchu kráteru Gale, což je jediné místo na povrchu Marsu, kde byl zatím metan objeven. Jeho pravděpodobným zdrojem by podle zjištění vědců měly být geologické procesy, které obnášejí reakci vody a hornin hluboko pod povrchem.

Pokud by tohle byl celý příběh, tak by to bylo až příliš jednoduché. SAM však zjistil, že se metan v kráteru Gale chová podivně. Objevuje se totiž za noci a během dne mizí. Jeho koncentrace kolísá v průběhu roku a občas vystřelí na hodnoty 40× vyšší než obvykle. Překvapivě se však metan v atmosféře nekumuluje. Evropsko-ruská sonda TGO (Trace Gas Orbiter) z programu ExoMars byla k Marsu vyslána specificky k tomu, aby studovala plyny v atmosféře. Metan tu však nenašla. „Tenhle příběh obsahuje opravdu hodně zvratů,“ přiznává Ashwin Vasavada, vědec z Jet Propulsion Laboratory v jižní Kalifornii zapojený do programu Curiosity.

Metan zaměstnává jak vědce studující Mars ať už pracují v laboratořích a nebo připravují počítačové modely, které by měly vysvětlit, proč se tento plyn chová tak divně a proč je detekován pouze v kráteru Gale. Výzkumná skupina expertů z NASA nyní představila zajímavý návrh. V březnovém čísle odborného časopisu Journal of Geophysical Research: Planets tato skupina publikovala článek, který naznačuje, že metan (ať už vzniká jakkoliv) by mohl být izolován pod ztuhlou vrstvou soli, která může vznikat v marsovském regolitu, tedy materiálu tvořeném rozdrcenými kameny a prachem. Když teploty vzrostou (ať už během teplejších částí roku nebo během dne), těsnost solné vrstvy se oslabí a metan může unikat.

Skupina vedená Alexanderem Pavlovem, planetologem z Goddardova střediska v marylandském Greenbeltu, naznačuje, že by plyn mohl také eruptivně unikat ve shlucích, když solná vrstva praskne vlivem tlaku, který vyvine rover o velikosti SUV, který projede po povrchu. Hypotéza, kterou tým předložil, by mohla pomoci vysvětlit, proč je metan detekován pouze v kráteru Gale. Pavlov připomíná, že se jedná o jedno ze dvou míst na povrch Marsu, po kterém jezdí velký rover, který vrtá do povrchu. Tím druhým místem je kráter Jezero s vozítkem Perseverance, avšak tento rover nemá žádný přístroj k detekci metanu.

Pavlov vystopoval původ této hypotézy k nesouvisejícímu experimentu, který vedl v roce 2017 a obnášel pěstování kolonií mikroorganismů v simulovaném marsovském peramfrostu (trvale zmrzlé půdě) napuštěném solí tak, jako je tomu v případě skutečného marsovského permafrostu. Pavlov a jeho kolegové ověřovali, zda halofilní bakterie, které žijí ve slaných jezerech a v dalších na sůl bohatých pozemských lokalitách mohou přežívat za podobných podmínek na Marsu. Výsledky sledování růstu mikrobů byly podle Pavlova neprůkazné, ale výzkumníci si všimli něčeho nečekaného. Svrchní vrstva půdy vytvořila při sublimaci ledu solnou krustu. Jinými slovy led přešel z tuhého přímo do plynného skupenství a nechal za sebou sůl.

„V té době jsme o tom moc nepřemýšleli,“ vzpomíná Pavlov, ale pak si v roce 2019 na solnou krustu vzpomněli, když laserový spektrometr TLS (Tunable Laser Spectrometer) v přístroji SAM zaznamenal výron metanu, který nikdo nebyl schopen vysvětlit. „V tu chvíli mi to v hlavě secvaklo,“ říká Pavlov. Tehdy začal se svým týmem testovat podmínky, které by ve ztvrdlé vrstvě soli vytvořily prasklinu. Tým testoval pět vzorků permafrostu, které byly napuštěny různými koncentracemi solí, kterým se říká chloristany a které se na Marsu hojně vyskytují. V kráteru Gale dnes zřejmě žádný permafrost není, ale mohl tu existovat kdysi dávno, když býval kráter Gale chladnější a vyskytoval se tu led. Vědci vystavili každý vzorek různým teplotám a tlaku atmosféry, k čemuž využili komoru pro simulaci Marsu, která se nachází na Goddardově středisku.

Členové Pavlovova týmu pak pravidelně vstřikovali neon (sloužil jako analog metanu) pod vzorek regolitu a měřili tlak plynu pod vzorkem a nad ním. Vyšší tlak pod vzorkem naznačoval, že plyn je zachycen. Těsnící vrstva se nakonec vytvořila za podmínek podobných marsovským během tří až třinácti dnů pouze ve vzorcích s pěti- až desetiprocentní koncentrací chloristanů. To je však mnohem vyšší koncentrace solí, než jakou Curiosity změřila v kráteru Gale. Jenže zdejší regolit je bohatý na jiný typ solných minerálů, kterým se říká sírany. Právě tyto látky by Pavlovův tým rád otestoval příště, aby zjistil, zda také dokáží vytvořit těsnou vrstvu.

Zlepšení našich znalostí o vzniku a zániku metanu na Marsu je klíčovým doporučením z posudku 2022 NASA Planetary Mission Senior Review. Teoretické práce (jako je ta Pavlovova) jsou v tomto snažení kriticky důležité. Ovšem vědci na druhou stranu říkají, že také potřebují konzistentnější měření metanu. SAM čichá po metanu jen párkrát do roka, protože jinak má plno práce se svým primárním úkolem, tedy analýzou chemického složení materiálu odvrtaného z povrchu. „Experimenty s metanem jsou náročné na zdroje, takže musíme myslet strategicky, když se rozhodneme je uskutečnit,“ říká Charles Malespin, hlavní řešitel přístroje SAM.

I tak by testování, jak často dochází k prudkým vzestupům koncentrace metanu, podle vědců vyžadovalo novou generaci přístrojů na povrchu, které by nepřetržitě měřily koncentrace metanu na mnoha různých místech Marsu. „Část prací, které souvisejí s metanem, budeme muset přenechat budoucím povrchovým sondám, které budou více zaměřené na hledání odpovědí na tyto specifické otázky,“ uzavírá Vasavada.

Přeloženo z:
https://science.nasa.gov/

autor: Dušan Majer

Převzato z Kosmonautix.cz, upraveno

Credit: (c) NASA/JPL-Caltech/DSS

NASA vytvořila působivou simulaci pádu do černé díry

Jak vlastně vypadá pád do černé díry a přechod přes bod (horizont událostí), z něhož …

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *

Používáme soubory cookies pro přizpůsobení obsahu webu a sledování návštěvnosti. Data o používání webu sdílíme s našimi partnery pro cílení reklamy a analýzu návštěvnosti. Více informací

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close