Excitony, tedy vázané páry elektron-díra, představují v posledních letech oblíbený předmět výzkumu, především s ohledem na vývoj elektroniky příští generace. Tyto kvazičástice (elektron, který excitací vyskočí z valenčního do vodivostního pásu, a kladně nabitá díra, která po něm zůstane) se v materiálech nadále pohybují společně. Aktuální výzkum se zaměřil na …
více »Třikrát grafen: Supravodivost i bez magického úhlu
Kvantové geometrie, supravodivost vs. rychlost elektronů. Elektrony jako kapalina nebo jako plyn. Magický úhel a selenid wolframičitý. Supravodivost vs. rychlost elektronů Vědci zkoumali, jak je vůbec možné, že dvouvrstva grafenu s pootočením o známý magický úhel může fungovat jako (nekonvenční) supravodič. Marc Bockrath a Jeanie Lau z Ohio State University …
více »Magnony tečou ultratenkými materiály překvapivě rychleji
Tenčí drát má (relativně) vyšší elektrický odpor. Opačně to může fungovat ve velmi tenkých vrstvách blížících se 2D a/nebo za velmi nízkých teplot. Fyzikové z University of Groningen a Brest University nyní stejný jev zaznamenali také v případě magnonů – tedy spinových vln (kvazičástic), které procházejí materiálem a přitom převracejí …
více »Fermiho oblouky detekovali i ve 2D materiálu
Fermiho plocha se používá ve fyzice kondenzovaných látek k popisu rozložení hybnosti elektronů v kovu. Obvykle tyto Fermiho plochy představují uzavřené obrazce. Výjimky jako Fermiho oblouky (arcs) jsou velmi vzácné a bývají mnohdy spojeny s dalšími exotickými vlastnostmi; v materiálu se např. současně objeví supravodivost, záporná magnetorezistence (změna elektrického odporu …
více »Změřili interakce elektronů na femtosekundové škále
Jak reagují různé materiály na dopad iontů? Tato otázka hraje důležitou roli například ve výzkumu jaderné fúze, kdy jsou stěny fúzního reaktoru bombardovány vysokoenergetickými ionty; ale také při výrobě polovodičů a jejich další úpravě, kdy iontové paprsky vytvářejí v materiálech mikroskopické struktury. Výsledek dopadu iontů na materiál se dosud studoval …
více »Rekordně urychlili elektrony, jen pomocí světla a na 20 centimetrech
To, na co jsou obvykle potřeba obří urychlovače, se nyní podařilo na 20 centimetrech a pouze pomocí přesně řízených ultrarychlých laserů. Howard Milchberg z University of Maryland, Jorge J. Rocca z Colorado State University a jejich kolegové dosáhli výsledku pomocí dvou laserových pulzů vyslaných do plynného vodíku. První pulz roztrhal …
více »Excitony mohou mít i hybridní dimenzi
Dimenzí se zde myslí, zda jde o 1D, 2D nebo 3D materiály. A v případě excitonů hybridní dimenze znamená, že něco jiného platí pro elektrony a něco jiného pro na ně navázané díry. Sloučeninu s celkem podivným chemickým vzorcem SiP2 nyní vědci připravili v podobě vrstevnatého materiálu, kde atomy uvnitř …
více »Elektrony surfují na světelné vlně
Ponderomotorická síla vytlačuje elektrony z oblastí s vysokou světelnou intenzitou. Fyzici z Univerzity Karlovy studovali interakci mezi elektrony a světlem v novém režimu, ve kterém se elektrony zachytí v optické záznějové vlně. Výsledná manipulace s energetickými spektry elektronů může přinést zajímavé aplikace v elektronové mikroskopii a spektroskopii. Elektronová mikroskopie je …
více »Světlo umožňuje manipulovat s excitony i magnetismem
Vědci z MITu a dalších institucí objevili při studiu exotické fyziky nový způsob manipulace s magnetismem materiálu pomocí světla; navíc přitom také připravili vzácnou formu hmoty. Výsledkem by mohly být nové technologické aplikace včetně mnohem rychlejších pamětí. Excitony jsou kvazičástice skládající se z elektronu a díry – obvykle původního místa, …
více »Fotoelektrický jev proběhne bleskově, v attosekundách
Albert Einstein nedostal Nobelovu cenu za teorii relativity, ale za popis fotoelektrického jevu. Když na materiál dopadne světlo, mohou se z něj uvolňovat elektrony. Einsteinův přínos zde spočíval v tom, že potvrdil existenci kvant energie světla – fotonů (světlo nepředává svou energii spojitě). Dosud ale nebylo jasné, jak rychle se …
více »