Nový výzkum má vyvracet stovky let rozšířenou představu o prvočíslech. Výsledek zaujme jak laické zájemce o matematiku, tak i profesionály. Podle vědců ze City University of Hong Kong a North Carolina State University lze výskyt prvočísel předvídat – což je v rozporu matematickým mainstreamem. Až dosud jsme nedokázali předpovědět, kde …
více »Brunova konstanta a řada převrácených hodnot prvočíselných dvojic
Vzhledem k tomu, že součet převrácených hodnot všech prvočísel diverguje k nekonečnu, vypadá téměř neuvěřitelně, že součet prvočíselných dvojic konverguje… Viggo Brun (1885-1978) „Žádné odvětví teorie čísel není naplněno tolika záhadami jako studium prvočílel: oněch rozčilujících a vzpurných celých čísel, která odmítají být dělena beze zbytku jinými celými čísly kromě …
více »Kvantový systém dokáže rozpoznávat prvočísla
Nová studie slibuje analýzu čísel fyzikálními metodami, pomocí jakéhosi analogového počítače. Tímto způsobem by mělo jít rozhodnout třeba o tom, zda je nějaké obří číslo prvočíslem (nebo zda patří do nějaké jiné speciální skupiny, průvodní tisková zpráva zmiňuje např. šťastná čísla). Autoři studie pomocí holografických laserových technik vytvořili systém s …
více »Z historie Riemannovy hypotézy: vztah mezi prvočísly a logaritmy
Důkaz Bertrandova postulátu, podle něhož mezi N a 2N se vždy najde alespoň jedno prvočíslo. Ale nemůže totéž platit pro N a 1,01N? Už od časů, kdy de la Vallée Poussin a Hadamard dokázali prvočíselnou větu, byli matematici trvale znechuceni svou vlastní neschopností nalézt jednodušší způsob, jak dokázat Gaussův vztah …
více »Erdős, matematický kouzelník z Budapešti
Existují libovolně dlouhé úseky přirozených čísel neobsahující žádná prvočísla. Matematik je stroj na přetváření kávy ve věty. V ústavu pobýval v té době ještě jeden matematický emigrant z Evropy, jehož životní pouť se měla protnout se Selbergovou. Podobně jako Ramanujanův příběh kdysi inspiroval mladého Selberga v Norsku, zapůsobilo jeho kouzlo …
více »Sheldonova věta o čísle 73 dokázána
Sheldon Cooper, jedna z hlavních postav seriálu Teorie velkého třesku, má, jak známo, ve zvláštní oblibě číslo 73. Jeho výjimečnost vysvětluje tak, že 73 ve dvojkové soustavě je 1001001, což je stejné číslo pozpátku, palindrom. Na tom by ještě nebylo nic zvláštního, nicméně těchto „zrcadlových“ motivů obsahuje číslo 73 mnohem …
více »Kvazikrystaly kopírují prvočísla
Jsou prvočísla spíše naší matematickou obsesí, nebo na ně narážíme i v přírodě? Druhá odpověď je správná; často se uvádí, že např. různé biologické cykly mají podobu prvočísel, zdůvodňuje se to evolučně. Nyní se prý prvočísla podařilo objevit i ve vzorech, které vzniknou po ozáření určitých speciálních kvazikrystalů. Podle studie …
více »Riemannova hypotéza a kryptografie
Britský matematik Michael Atiyah tvrdí, že se mu podařilo dokázat Riemannovu hypotézu. Co si o tom máme myslet? Plus pokus o vysvětlení, proč se o bezpečnost šifer sotva třeba bát. Jak lze zjistit krátkým prohledáváním zdrojů, Atiyahovi je 90 let a uvádí, že se mj. snaží rozbourat tradiční představu o …
více »Prvočíselné kuriozity
Číslo 313 se objevuje na poznávací značce auta, jímž jezdí kačer Donald. Má tu pozoruhodnou vlastnost, že tvoří palindrom – může být čteno stejně zprava doleva i zleva doprava – a dokonce jak v desítkové, tak v dvojkové soustavě: 313 (desítkově) = 100111001 (dvojkově). Navíc je to jediné trojciferné číslo …
více »Složené objekty a jednoznačnost jejich rozkladu
Základní věta aritmetiky praví, že rozklad složeného čísla na prvočísla je jednoznačný. Proč je tuto větu vůbec třeba dokazovat? Vypadá přece úplně evidentně. „Čísla 7, 13, 19, 37 a 47 jsou prvočísla, a je-li tedy základní věta aritmetiky zřejmá, mělo by být jasné, že 7 x 13 x 19 se …
více »