Nehořlavá experimentální vodná baterie vydrží 500 cyklů vybití. FOTO: René Volfík, Fyzikální úustav AV ČR

V AV ČR patentovali novou nabíjecí baterii, která nehoří

Vodné baterie byly představeny již dříve, ale jejich rozmachu bránila relativně nízká kapacita a napětí.

Vědci Akademie věd ČR patentovali vynález, který by mohl vyřešit problémy s hořícími bateriemi. Experimentální vysokonapěťová baterie, kterou zkonstruovali ve Fyzikálním ústavu a Ústavu fyzikální chemie Jaroslava Heyrovského Akademie věd ČR, funguje na principu elektrochemické reakce. Vydrží 500 cyklů vybití a opětovného nabití. Její kapacita je srovnatelná s komerčními nikl-metal hydridovými bateriemi. Přitom je vyrobena z extrémně levných materiálů.

Ukládání elektřiny vyrobené v solárních nebo větrných elektrárnách je velkou výzvou. I když na trhu existuje celá řada inovativních typů baterií, většina z nich se nehodí pro vysokokapacitní ukládání elektřiny, a to zejména z důvodu vysoké ceny.

Nová technologie je založena na principu vodné baterie: využívá slanou vodu, zinek a grafit. Vysoké napětí baterii dodává speciální chaotropní sůl, jejíž vliv na vlastnosti vodných roztoků studoval před více než 130 lety pražský německý chemik Franz Hofmeister. Tým vědců vedený Jiřím Červenkou se jeho poznatky inspiroval a vyvinul baterii, která se může uplatnit například ve stacionárních bateriových systémech.

„Vodné baterie byly představeny již dříve, ale jejich rozmachu bránila relativně nízká kapacita a napětí. Našemu týmu se podařilo tento problém vyřešit tím, že jsme do roztoku vody přidali velké množství chaotropní soli chloristanu zinečnatého,“ vysvětluje Jiří Červenka z Fyzikálního ústavu AV ČR. „Dosažené napětí je srovnatelné s napětím, kterého dosahují organické elektrolyty v komerčních lithiových bateriích. Nespornou výhodou našeho elektrolytu je vysoká vodivost, která na rozdíl od organických elektrolytů významně neklesá ani za nízkých teplot.“

Výbuch i vznícení mimo hru

Baterie zároveň nehoří a nemůže vybuchnout, protože má nehořlavý elektrolyt. V tom je zásadní rozdíl oproti Li-ion bateriím, které jsou nyní nejpoužívanější na trhu. „Li-ion baterie mají velmi hořlavé organické elektrolyty, a navíc obsahují lithium, které se může na vzduchu samovznítit. To u naší baterie nehrozí,“ zdůrazňuje Jiří Červenka.

Inovativní řešení této technologie si vědci patentovali v rámci lucemburského a evropského patentu. Výsledky svých výzkumů také publikovali v prestižních vědeckých časopisech, naposledy v tomto týdnu v Journal of Materials Chemistry A. Výzkumníci nyní hledají průmyslové partnery se zájmem o další vývoj produktu.

„Tento systém je nesmírně zajímavý nejen pro budoucí aplikace, ale i z hlediska základního výzkumu. Jak jsme ukázali, velmi důležitou roli zde hraje například vnitřní struktura materiálu elektrod, kde přílišná dokonalost nevede k nejlepším vlastnostem v některých ohledech, což i může být další výhodou pro aplikace,“ říká o vynálezu Otakar Frank z Ústavu fyzikální chemie Jaroslava Heyrovského AV ČR.

Princip baterie je založen na transportu dvou rozdílných iontů, dvojmocném zinku a jednomocném chloristanu. Dvojmocný zinek má v porovnání s jednomocným lithiem výhodu, že může při nabíjecím a vybíjecím procesu přenášet dva elektrony na atom, a díky tomu může mít teoreticky větší kapacitu než lithium při stejném objemu.

Kapacitu lze ještě navýšit

Dosavadní testy prokázaly, že experimentální vodná baterie dosahuje kapacitu okolo 45 mAh/g a výstupní napětí 2 V a vydrží 500 cyklů vybití a opětovného nabití, aniž by její výkonnost citelně klesla. Výsledná kapacita experimentální baterie je tedy srovnatelná s komerčními nikl-metal hydridovými bateriemi.

„Domnívám se, že po důkladné optimalizaci této baterie je ještě možné významně navýšit její kapacitu,“ podtrhuje Jiří Červenka. „Nyní se zaměříme především na vysokokapacitní baterie s ionty, které mohou mít v principu vyšší kapacitu než lithiové baterie. V nedávné době jsme na podobném principu sestavili hliníkovou vodnou baterii, která se jeví také jako velmi slibná,“ uvádí fyzik.

tisková zpráva AV ČR

Jak srdeční buňky odolávají nedostatku kyslíku?

Dlouhodobý pobyt ve vysokohorském prostředí s nízkým obsahem kyslíku má protektivní účinky na činnost srdce. …

One comment

  1. No! Do aut a mobilních zařízení to asi moc nebude, když je kapacita pětkrát nižší, než u lithiovek. Optimalizace by zase asi trvala dlouhá léta a to jsou tu už slibnější kandidáti. Do velkokapacitních zásobníků energie to taky nevypadá úplně ideálně, když to vydrží jen 500 cyklů. Zachránit by to mohla cena a recyklovatelnost, ale nevím.

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *