Výzkum Zuzany Turoňové je zaměřen na rozdíl směrů orientace osy rotace černé díry (tmavě modrá šipka) a rotační osy binárního systému (žlutá šipka), jehož jednou složkou je černá díra a druhou méně hmotná hvězda.

Odhalování anatomie černých děr

Pokud je černá díra součástí binárního systému, nabízí se celá studna objevů.

Studentka Teoretické fyziky na Fyzikálním ústavu SU v Opavě, Zuzana Turoňová se ve své doktorandské práci zaměřila na výzkum specifických vlastností rentgenových binárních systémů, ve kterých jednou ze složek je černá díra. Tento zajímavý výzkum, jehož cílem je porozumění vzniku a vývoji těchto binárních systémů, v budoucnu přispěje k popisu chování látky v okolí černých děr a pomůže tak lépe identifikovat i dále zkoumat například prstence hmoty v okolí černých děr, jejichž snímky nám v minulých letech přinesl projekt Event Horizon Telescope. Svému výzkumu se přitom Zuzana Turoňová věnuje ve spolupráci s vědci na proslulé vědecké základně Los Alamos ve Spojených státech, v jejíž blízkosti proběhl 16. července 1945 pod vedením Roberta Oppenheimera první test atomové bomby.

Po stopách „kopanců“ od supernov
Zuzana Turoňová se zaměřila na zajímavou oblast výzkumu černých děr, konkrétně na to, jakým způsobem se chová látka obklopující černé díry, je-li díra součástí binárního systému. Tedy je-li v její blízkosti hvězda, se kterou je černá díra v gravitační interakci. Výsledkem interakce je přitom i vznik silného rentgenového záření, na jehož vlastnosti se vědkyně rovněž zaměřuje.

Ve své práci se Turoňová soustředí na poměrně zajímavý jev. „Snažím se vysvětlit nesouosost oběžné roviny vůči rovině disku hmoty obklopujícího černou díru v binárním systému s jiným hmotným objektem,“ popisuje Turoňová. „V podstatě jde o to, že černé díry mohou žít v páru s nějakým hmotným objektem, například hvězdným červeným obrem a obě tělesa obíhají kolem společného těžiště. Černou díru navíc obklopuje disk hmoty, tedy akreční disk, a očekávali bychom, že by měl ležet a obíhat černou díru ve stejné rovině, v jaké se obíhají černá díra s blízkou hvězdou. Jak se ale ukazuje, vždycky tomu tak není.“

Existuje několik způsobů, jakými mohou tyto rentgenové binární systémy vzniknout. Pokud dokážeme přesně změřit tento úhel, dozvíme se víc o způsobu, jakým tyto binární systémy vznikly. Jedním z těchto vývojových scénářů je exploze supernovy, kdy se stará a hmotná hvězda v binárním systému zhroutí a dojde k překotnému odhození jejich vnějších obálek. Nerovnoměrnost intenzity výbuchu těchto supernov do různých směrů mohou vést k jakémusi „kopanci“ do nově vzniklé černé díry, který dokáže systém vyvést z rovnováhy. Předpokládá se, že rotační roviny se časem budou synchronizovat. Ovšem právě ta nesouosost dává vědcům možnost lépe poznat dění v okolí černé díry, která – jak známo – sama o sobě přímo vidět není a její výzkum je možný jen z jejich projevů na okolí.

Ve své práci zkoumá Zuzana Turoňová také trojrozměrnou orientaci rotujících rentgenových binárních systémů s černou dírou. Tyto fyzikální modely vzápětí porovnává s daty získanými rentgenovým dalekohledem Neil Gehrels Swift Observatory, který se věnoval pozorování silného zdroje rentgenového záření v binárním systému GRO J1655–40 v souhvězdí Štíra. Tvoří jej černá díra o hmotnosti několika Sluncí a méně hmotná „nafouknutá“ hvězda žlutobílé barvy s povrchovou teplotou okolo 6500 kelvinů. A je to právě takový systém, na který se dají teoretické poznatky aplikovat, aby se mohlo o černé díře zjistit ještě více nových informací.

„Proč vlastně takový výzkum děláme? Hlavní problém u výzkumu černých děr je, že je nevidíme, neboť z jejich gravitačního pole neunikne téměř žádné elektromagnetické záření. Nemáme přímý přístup k informacím o jejich velikosti, směru rotace, či i rychlosti jejich otáčení,“ vysvětluje Turoňová. Dodává, že všechno, co k nám od černých děr přichází, jsou spršky či dlouhodobější dávky energie uvolněné při interakci s jinými tělesy. Pokud je černá díra součástí binárního systému, nabízí se ale celá „studna objevů“. Například rotační osa černých děr s jejich vnitřním akrečním diskem je rovnoběžná s osou výtrysků ionizované hmoty, a tedy i rentgenového záření. „Z toho jsme schopni změřit sklon vnitřního akrečního disku, který je podle této konvenční teorie stejný jako sklon rotace černé díry a dokážeme tím odhalit úhel spin-orbitální nesouososti. Především ale dokážeme lépe určit geometrii takového binárního systému s černou dírou a spolu s dalšími ověřenými metodami odhalit její doposud neviditelnou anatomii,“ nadšeně popisuje Zuzana cíle své práce.

Výzkum ve slavné vědecké laboratoři
„Doktorandská práce vzniká v Národní Laboratoři Los Alamos ve spolupráci s Gregem Salvesenem, který je mentorem mého výzkumu. Školitelem na Fyzikálním ústavu v Opavě je docent Török,“ doplňuje Turoňová.

Národní Laboratoř Los Alamos byla založena v roce 1943 jako tajná vědecká základna pro vývoj nukleárních zbraní za druhé světové války a po dlouhá léta sloužila jako hlavní centrum pro provádění a koordinaci jaderného výzkumu. Základna leží v Novém Mexiku na jihozápadě USA asi 40 kilometrů severozápadně od města Santa Fé a asi 240 kilometrů severně od místa Trinity, kde 16. července roku 1945 američtí vědci pod vedením Roberta Oppenheimera otestovali první atomovou bombu s pracovním názvem Gadget. Dnes laboratoře v Los Alamos provádějí široký multidisciplinární výzkum v oblastech, jakými jsou národní bezpečnost, výzkum vesmíru, jaderná fúze, obnovitelná energie, medicína, nanotechnologie nebo superpočítače.

oznámení projektu Astrofyzikální ProGResy z Opavy

Nový způsob vytváření 2D materiálů využívá ultravysoké vakuum

Pomocí exfoliace lze připravovat dvojrozměrné materiály, které mají větší plochu a díky kvalitním výchozím krystalům …

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *

Používáme soubory cookies pro přizpůsobení obsahu webu a sledování návštěvnosti. Data o používání webu sdílíme s našimi partnery pro cílení reklamy a analýzu návštěvnosti. Více informací

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close