Prediktivní údržba a monitorovaní stavu zařízení s prostředím MATLAB

 

Správná a spolehlivá práce zařízení je důležitou součástí výrobních procesů. Významnou úlohu při chodu zařízení sehrává jejich efektivní údržba. Znalost okamžiku, ve kterém je potřebné provést údržbu, je při provozu klíčová. Moderní metody dokážou odhadnout čas, kdy je vhodné údržbu uskutečnit. MATLAB poskytuje skupinu nástrojů, které pomáhají při vytvoření algoritmů prediktivní údržby a specializovanou nadstavbu zaměřenou na tuto oblast – Predictive Maintenance Toolbox.

V každodenním životě se setkáváme se zařízeními, která se časem pokazí, pokud se na nich neprovádí údržba. Společnosti využívají několik strategií údržby na dosažení spolehlivosti a snížení nákladů. První strategií je reaktivní údržba, kdy se zařízení opravuje až po poruše. U komplexních a drahých systémů je tento přístup velmi nákladný a časově náročný. Proto je častěji využívanou strategií provádění údržby v pravidelných intervalech. V tomto případě je těžké určit správný čas údržby a častokrát se údržba provádí předčasně, tedy, i když je zařízení v pořádku. Pokud bychom byli schopni předpovídat, kdy nastane porucha, mohli bychom naplánovat údržbu ve správný čas. Prediktivní údržba umožňuje odhadnout čas do poruchy na základě dat (měřených na sledovaném zařízení) vytvořením prediktivního modelu. Na druhé straně, monitorování stavu zařízení využívá data senzorů na zjištění změn, které indikují začínající poruchy.

Základem vývoje algoritmů prediktivní údržby a monitorování stavu jsou data. Data mohou pocházet z vícerých zdrojů, být v různých formátech a časech. Vzhledem k tomu, že většinou zaznamenáváme delší dobu provozu zařízení, od běžného provozu po poruchové stavy, dat může být mnoho a práce s nimi není vždy jednoduchá. Predictive Maintenance Toolbox poskytuje nástroje pro správu dat ze senzorů, které jsou uložené lokálně nebo vzdáleně. Opačným extrémem je, když máme dat málo nebo nemáme z poruchových stavů data žádná. V tomto případě můžeme využít metodu Model-Based Design a poruchová data pro algoritmy prediktivní údržby vygenerovat pomocí modelů zařízení v simulačních nástrojích, jako je Simulink nebo skupina nástrojů Simscape.

Obrázek 1: Indikátor stavu ve frekvenční oblasti – změna hodnot indikuje příchod poruchy

Dalším důležitým krokem při vývoji algoritmů prediktivní údržby a monitorování stavu zařízení je předzpracování dat. Předzpracování dat zahrnuje úpravy dat, jako je odstranění nebo náhrada chybějících údajů, případně odlehlých hodnot. Pokročilejší metody předzpracování dat zahrnují filtraci a vyhlazení signálů. Někdy je vhodnější transformovat signál do jiné domény, jako je například frekvenční oblast (obr. 1). Velkou pomoc při pokročilejším předzpracování dat poskytují nástroje, jako Signal Processing Toolbox nebo Wavelet Toolbox, s množstvím připravených funkcí. Předzpracování pomáhá zjednodušit volbu indikátorů stavu zařízení, které jsou důležité k odlišení běžného a poruchového provozu. Indikátor stavu je charakteristika počítaná z naměřených a předzpracovaných dat, jejíž chování (hodnoty) se mění předvídatelným způsobem s tím, jak systém degraduje nebo přechází do odlišného provozního režimu. Indikátory sehrávají klíčovou úlohu při vytváření algoritmu prediktivní údržby nebo monitorování stavu.

Jádrem algoritmů prediktivní údržby je vytvoření prediktivního modelu. Mezi hlavní součásti nástroje Predictive Maintenance Toolbox patří metody pro výpočet odhadované zbývající životnosti zařízení (Remaining Useful Life – RUL). Modely založené na podobnosti (Similarity models) predikují životnost na základě známého chování podobných zařízení z historických dat od spuštění až po poruchu. Tyto modely porovnávají trendy v aktuálních datech (indikátorech) sledovaného zařízení, které vykazují podobné degradační chování (obr. 2a). Modely založené na přežití (Survival models) využívají statistické metody. Jsou výhodné, pokud nemáme historická data, ale pouze údaje o časech poruchy nebo údržby. Na základě těchto dat model odhaduje pravděpodobnostní distribuci časů poruch (obr. 2b). Modely založené na degradaci (Degradation models) využívají předchozí chování daného zařízení k předpovídání vývoje budoucího stavu. Tato metoda se snaží natrénovat lineární nebo exponenciální model degradace a určuje zbývající životnost na základě známého prahu selhání (obr. 2c). Model též poskytuje intervaly spolehlivosti odhadu a pravděpodobnost poruchy.


Obrázek 2: Modely pro prediktivní údržbu v prostředí MATLAB
Obrázek v plném rozlišení

Systémy monitorování stavu zařízení rozlišují mezi poruchou a běžným stavem a nemívají prediktivní charakter, pouze vyhodnocují aktuální situaci. Na vytvoření algoritmu monitorování stavu využíváme podobně jako při prediktivní údržbě indikátory stavu. Jednoduché modely na monitorování stavu mohou zahrnovat jedno nebo více ohraničení indikátorů, a signalizovat poruchu, pokud jsou hranice překročené. Další modely využívají strojové učení k natrénování klasifikátoru, který přijímá aktuální hodnoty indikátorů a vrací pravděpodobnost chybového stavu.

Po vytvoření algoritmu prediktivní údržby nebo monitorování stavu je možné algoritmus nasadit na lokální produkční systém, cloud nebo koncové zařízení. Nasazení v cloudu je výhodné, pokud do něj sbíráte a ukládáte vaše data. Odpadá tím potřeba přesunu dat mezi cloudovým úložištěm a lokálními počítači, na kterých by algoritmy běžely. Nasazením na koncová zařízení jsou algoritmy blíže strojům, odpadá tím potřeba přesunu velkých datových objemů a informace o stavu zařízení jsou dostupné okamžitě. Poslední možností je vhodná kombinace popsaných přístupů v závislosti na dostupné infrastruktuře, výpočetním výkonu a dalších aspektech. MATLAB poskytuje nástroje k nasazení algoritmů na lokální systém (MATLAB Production Server), cloudová řešení jako je Amazon Web Services (AWS) a Microsoft Azure, případně automatické generování zdrojového kódu pro koncová zařízení.

Prediktivní údržba a monitorování stavu zařízení zahrnuje vícero oblastí, jako jsou zpracování signálů, identifikace systémů, modelování systémů či strojové učení a deep learning (obr. 3). Kromě připravených funkcí poskytuje MATLAB přehlednou dokumentaci s příklady pro jednoduchý úvod do problematiky a grafické aplikace, které ulehčí práci bez potřeby psaní programového kódu.


Obrázek 3: Kroky při vývoji algoritmů prediktivní údržby

Distributor produktů společnosti MathWorks v České republice a na Slovensku:
HUMUSOFT s. r. o.
http://www.humusoft.cz

Střípky: Supravodič zesílený magnetismem. Pro supravodivost hydridů by mohl být klíčový také cer

Výzkum hydridů již umožňuje supravodiče fungující za téměř pokojové teploty, pro změnu ale vyžadují obří …

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *

Používáme soubory cookies pro přizpůsobení obsahu webu a sledování návštěvnosti. Data o používání webu sdílíme s našimi partnery pro cílení reklamy a analýzu návštěvnosti. Více informací

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close